Solving Burger's equation by semi-analytical and implicit method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Fourth-order finite difference method for solving Burgers' equation

In this paper, we present fourth-order finite difference method for solving nonlinear one-dimensional Burgers equation. This method is unconditionally stable. The convergence analysis of the present method is studied and an upper bound for the error is derived. Numerical comparisons are made with most of the existing numerical methods for solving this equation. 2005 Elsevier Inc. All rights res...

متن کامل

Solving Burgers' Equation Using Optimal Rational Approximations

Abstra t. We solve vis ous Burger's equation using a fast and a urate algorithm referred to here as the redu tion algorithm for omputing near optimal rational approximations. Given a proper rational fun tion with n poles, the redu tion algorithm omputes (for a desired L ∞ -approximation error) a rational approximation of the same form, but with a (near) optimally small number m ≪ n of poles. Al...

متن کامل

Semi-Discrete Formulations for 1D Burgers Equation

In this work we compare semi-discrete formulations to obtain numerical solutions for the 1D Burgers equation. The formulations consist in the discretization of the time-domain via multi-stage methods of second and fourth order: R11 and R22 Padé approximants, and of the spatial-domain via finite element methods: least-squares (MEFMQ), Galerkin (MEFG) and Streamline-Upwind Petrov-Galerkin (SUPG)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics, Optimization & Information Computing

سال: 2014

ISSN: 2310-5070,2311-004X

DOI: 10.19139/soic.v2i3.70